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Abstract

Shaping is a way in which a human designer
can provide assistance to a learning system to
enable it to solve problems that would other-
wise defeat it. Results are presented showing
that shaping can significantly improve the fi-
nal performance of controllers evolved for a
difficult visual tracking task. Controllers are
developed in simulation and then transferred
to a real robot head.

1 INTRODUCTION

1.1 ROBOT LEARNING FOR VISUAL
TASKS

In recent years a lot of research effort has been put
into producing real-world robot controllers automati-
cally using techniques from the machine learning and
optimization research fields. Engineering robot con-
trollers by hand is difficult for many reasons, includ-
ing problems of sensor and actuator noise, calibration
errors, sensitivity of the robot-environment system to
small changes in starting conditions, the requirement
for real-time behaviour, and the sheer difficulty of hu-
mans ‘thinking down’ to the robot’s level. The idea of
deriving controllers for complex tasks automatically
from the robot’s own interaction with its environment
is therefore an attractive one.

While the field has produced many interesting results,
much work in robot learning is subject to the criticism
that the tasks tackled are usually relatively simple.
Typically the robots are equipped with only a few low-
bandwidth sensors and actuators and are used in tasks
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such as obstacle avoidance and light-following which
are robust to small inaccuracies in behaviour.

Equipping robots with vision opens up a whole field
of more challenging tasks, and introduces a number of
new problems to be overcome by a learning system.
Visual sensors typically produce enormous amounts of
raw data at a very high rate, and this data is generally
difficult to relate unambiguously to the physical struc-
ture of the scene in front of the robot. A number of
researchers have successfully used robot learning for vi-
sual tasks. Asada et al. (1996), for instance, have used
Q-learning to train visually equipped mobile robots
to shoot tennis balls through a ‘goal’. Harvey et al.
(1994) have evolved a neural network controller that
allows a gantry robot to find coloured targets using
vision. Finally, Jakobi (1998) has evolved a neural net
motion-tracking controller for a 1 degree of freedom
robot head.

1.2 LENDING A HAND: SHAPING

Any learning system has its limits. In general, the
more flexible and general purpose the learning algo-
rithm, and the fewer the assumptions made about the
nature of the problem, the harder it is for the learning
system to find a solution in a reasonable time. Many
interesting visual tasks are probably beyond the ca-
pabilities of pure general-purpose learning algorithms
without some kind of assistance — of the vision sys-
tems cited above, two (Asada et al., 1996; Jakobi,
1998) succeed by making use of heavily pre-processed
visual input, which simplifies the problem enormously,
while the third (Harvey et al., 1994) tackles a problem
which it turns out can be solved by a relatively simple
controller that looks at only two pixels in the image.

It seems clear that for really complicated tasks the
learning system must be assisted by a human designer.
In robot learning, giving assistance in this way is of-
ten called ‘shaping’ (Dorigo and Colombetti, 1993,



1998). There are several different categories of shaping
method, but two of the most important are:

Controller decomposition Controllers for complex
tasks can often be broken down into a hierarchy of
smaller modules. It is often much easier to train
these individual modules separately or sequen-
tially, than to train the whole controller at once.
In robotics, controllers are often decomposed in
a behaviour-based way, with some modules per-
forming simple sub-tasks, and others coordinating
the activation of those modules (e.g. Mahadevan
and Connell, 1992; Dorigo and Colombetti, 1993).

Progressive problem difficulty
One important problem faced by learning robots
is the difficulty of ‘getting off the ground’. At the
start of the learning process the robot will proba-
bly behave in a relatively random fashion, and in
some training scenarios this might mean that the
robot gets very little useful feedback on how to
behave correctly. This problem can sometimes be
alleviated by initially training the robot on easier
versions of the full task. Asada et al. (1996) call
this ‘learning from easy missions’.

A fuller taxonomy of shaping methods can be found in
Perkins (1999b); Perkins and Hayes (1996). For more
discussion of robot shaping in general see Dorigo and
Colombetti (1998).

2 VISUAL TRACKING

2.1 TASK DESCRIPTION

The experiments described here mostly concern a 1-D
light-tracking task using a robot head equipped with
a single camera that can be moved independently in
‘pan’ and ‘tilt’ directions. The task requires the con-
troller to keep the camera pointed at a moving bright
light source positioned in front of the robot, so that the
straight-ahead direction of the camera is coincident
with the centre of the light source. In these experi-
ments, the robot head’s tilt axis is fixed, and so only
tracking errors in the horizontal direction are consid-
ered.

2.2 A SIMULATOR FOR EVOLVING
REAL-WORLD TRACKERS

Evolving controllers for the tracking task would be
a tedious process if carried out directly on the real
robot. Although the camera can move quite rapidly,
at around 100◦s−1, the evolutionary runs presented in

this paper would still take several weeks each to run.
The robot head would be unlikely to survive this much
continuous operation! As a result the controllers are
initially evolved in simulation before being transferred
to the real robot. Evolving in simulation has the very
useful additional benefit that we can provide the learn-
ing system with a much more ‘informed’ evaluation
mechanism than is possible in the real world.

Our simulator is designed using a methodology called
the ‘radical envelope of noise’ (Jakobi, 1997), which
can be summarized as:

• For environmental features that are relevant to
the task, model them as well as possible, and add
a small amount of noise to mask modelling inac-
curacies.

• For environmental features that are irrelevant
to the task, model them poorly, and add huge
amounts of noise to prevent the learning system
paying any attention to those features.

In accordance with this philosophy, a visual simula-
tor for the light-tracking task was developed. For this
task we are not really interested in the details of the
background behind the target to be tracked, and so
this can be replaced with a highly variable randomly
generated one. Some care was taken to ensure that
the simulated background shows random variation at
both fine and coarse scales in a similar fashion to the
real world. Figure 1 shows a typical simulated scene
generated for the light-tracking task.

Figure 1: Example image produced by light-tracking
simulator. Note that this image has been sub-sampled.

The image dimensions are 320 × 240 pixels. Back-
ground pixels vary in intensity value between 0 and
150. The diamond shaped simulated target varies in
radius between 4◦ and 10◦, and in intensity between
230 and 240. The target moves in the simulated scene
with a velocity between 0 and 10◦s−1, and the simu-
lator runs on a 4Hz cycle.

It is not necessary to model the background scene in
a realistic way. However, it is necessary to model the



way in which the target moves fairly accurately. This
was achieved by basing the imaging model on empiri-
cal measurements of known scenes taken using the real
robot head. Building a simulator using empirical data
has previously been suggested by Miglino et al. (1995).
On the actuator side, the stepper motors on the robot
head actually allow almost error-free positioning, but
the velocity signals sent to the simulator by the con-
troller are corrupted by adding multiplicative Gaus-
sian noise with µ = 1.0, σ = 0.02 to mask image mod-
elling inaccuracies. More details on the simulator can
be found in Perkins (1999b).

3 EVOLUTIONARY DETAILS

3.1 THE TAG ARCHITECTURE

Many different learning architectures could be used
for learning visual tasks. For reasons of generality,
flexibility, and ease of use however, we use a variant
of genetic programming (Koza, 1992) called tag. The
tag architecture is described fully in Perkins (1999b),
but a brief overview of its essential features is given
here.

In contrast to standard GP, the structures evolved
by tag are general acyclic graphs rather than trees.
Evolving graphs rather than trees allows controllers
that use values computed by sub-graphs more than
once to be be expressed in a more compact and evolv-
able way than is possible with simple trees. Sev-
eral other authors have suggested adding graphs into
GP for similar reasons (Poli, 1996; Teller and Veloso,
1996). tag graphs are initially created by constructing
a ‘bag’ of randomly chosen GP-style function and ter-
minal nodes. The number of nodes in the bag is chosen
randomly within a certain range: 10–20 nodes per bag
in these experiments. tag graphs can have more than
one output value (for instance one output per actua-
tor), and for each required output, a node is selected
from the bag at random to return that value. If the
node is not a terminal node, then further nodes are
connected to its inputs as necessary and this connec-
tion process continues in recursive fashion until there
are no nodes in the graph that need input connections.
Nodes may connect to other nodes that already form
part of the graph, but loops are prevented by insisting
that no node may connect to a node that is its ancestor
(i.e. its parent, or an ancestor of its parent). In order
to ensure that the process terminates it is necessary
that the bag contains at least one terminal node to
start with. At the end of the connection process, not
all nodes are necessarily in use — these unused nodes
act as spare genetic material or ‘introns’ that may be

used later.

Traditional GP uses sub-tree crossover as its primary
genetic operator. tag also uses crossover, but the
operator must be modified for use with graphs. For
the most part, ‘sub-graph crossover’ is very similar to
sub-tree crossover. Starting with two parents, two off-
spring graphs are created by copying. Then, a node is
selected in each offspring to act as an exchange node.
To perform crossover, the exchange nodes are simply
swapped between the two graphs, together with all
their descendent nodes (a node is a descendent of an-
other node if it is a child of that node or a descendent
of a child).

The tricky part of sub-graph crossover is deciding what
to do about connections that previously connected into
the exchanged sub-graphs (other than connections to
the exchange nodes themselves). One obvious answer
is just to randomly reassign such connections, but tag
tries to take a more intelligent approach that attempts
to preserve structure where possible. In brief, ev-
ery node is associated with a fixed ‘tag’ value that
is uniquely assigned when that node is first created.
When a node is copied, the copy is given the same
tag value. If a particular sub-graph turns out to be a
useful component, then copies of it will tend to multi-
ply in the population. Each of those copies will have
similar sets of nodes and associated tags. When tag
is reassigning a connection into an exchanged region
of nodes, it first checks to see if there are any nodes
present in the newly formed individual that have the
same tag as the node that the connection was pre-
viously connected to. If there is, then a connection
is made to that node. If not, then the connection is
reassigned randomly. The key idea is that it is less
destructive if connections are reassigned to structures
that are similar to the ones they were previously con-
nected to.

Offspring can also be produced by mutation. In this
case, a single child is initially generated by copying a
single parent. Then, R nodes are selected at random
for mutation, where R is Poisson-distributed with ex-
pected value 2.1 Some types of node have internal
parameters that are ‘micro-mutatable’, and if such a
node is selected, then 90% of the time, one of its pa-
rameters is mutated slightly. In all other cases the
node has one of its input connections reassigned ran-
domly (if applicable), or is itself replaced with a ran-
dom node.

tag has a number of other interesting features, princi-
pally the use of a ‘rational allocation of trials’ (RAT)

1If R = 0, then R is re-generated.



mechanism (Teller and Andre, 1997) for reducing fit-
ness evaluation time, but space precludes a fuller de-
scription here. See Perkins (1999b) for details.

Apart from the aforementioned exceptions, tag is a
relatively conventional evolutionary algorithm. It is
a ‘steady-state’ algorithm in that as soon as offspring
are generated they are put back into the evolving pop-
ulation — there is no concept of a generation. tag
maintains a population of size N . Parents are selected
using tournament selection: at each evolutionary step,
M individuals are chosen from the population at ran-
dom and their fitnesses are compared. The fittest indi-
vidual in the tournament is chosen as one parent, and
one of the remaining individuals is chosen randomly
as the other parent. 50% of the time the two parents
are bred using crossover. Only one of the two poten-
tial children is actually generated. The other 50% of
the time, mutation is used to derive a single offspring
from the fitter of the two parents. In either case the
offspring replaces the less fit of its parents. This evo-
lutionary cycle is repeated a total of T times during a
single run. In the experiments reported here, N = 100,
M = 4 and usually, T = 25000.

3.2 SHAPING AND TAG

Shaping generally implies an incremental acquisition
of behaviour with newly learned skills building upon
previously acquired skills. The human trainer must
design an incremental path of increasing competence
that the robot is to follow. Each ‘stage’ along this
path or ‘shaping regime’, results in the acquisition of
another unit of competence in some area related to the
overall task. The controller must not forget skills it has
already learned, even if they are not directly relevant
to the current stage of the training process, and it must
be able to combine previously learned skills together
to form new, more complex skills.

In these experiments, we achieve incremental learning
using a simple multiple agent approach we call ‘hier-
archical evolutionary gating’ (HEG). The idea is that
the final controller consists of a collection of agents,
each agent being evolved during a single stage of the
shaping regime. Agents evolved at different stages may
conflict with each other in the signals that they want to
send to a particular actuator. In the HEG framework,
such agents possess a special additional real-valued
output called the ‘validity’. For an agent to control
an actuator, its validity must be greater than zero. If
there is more than one such agent, then the most re-
cently evolved agent wins. If no agents are eligible, the
actuator assumes a default value for the current cycle.
The validity mechanism allows an agent to take control

if it needs to override previously evolved agents, and to
relinquish control to previously evolved agents if that
is not necessary. Note that since different agents can
have different sets of outputs, an agent which is over-
ridden with respect to actuator A, may get to control
actuator B.

4 SHAPING EXPERIMENTS

4.1 SIMULATION RUNS

Two experiments were performed attempting to evolve
controllers for the 1-D light-tracking task.

The first experiment acted as a control and attempted
to evolve a monolithic controller consisting of a single
tag graph with a single output controlling the cam-
era pan speed. Standard GP-style function nodes and
terminals were used, consisting of the standard arith-
metic functions: +, −, ×, ÷, >, neg, sgn and abs;
plus the ephemeral random constant �. ÷ returns 1.0
if its second argument is zero. > returns 1.0 if its
first argument is greater than its second argument, or
0.0 otherwise. sgn returns 1.0 if its single argument
is greater than zero, or -1.0 otherwise. Random con-
stants are initialized to values between -1.0 and 1.0.

In addition to these familiar functions two additional
terminal nodes and three additional functions were in-
troduced for the tracking task. vis provides access to
the camera sensor. It contains five internal parame-
ters that define a rectangular ‘receptive field’ in the
image. Four parameters define this rectangle, and the
fifth defines a sampling resolution within that recep-
tive field. vis is unusual in that it returns a 2-D array
of values. The arithmetic functions described above
are designed to cope with arrays in a sensible fash-
ion — see Perkins (1999b) for details. In conjunction
with this terminal node, three simple image process-
ing function nodes are defined: avg, which returns the
mean value of an array; mx, which returns the first x-
moment of the array, and my, which returns the first
y-moment of the array. These functions simply return
their input if passed scalar values.

The fitness function for the light-tracking task is de-
fined in terms of the tracking error E:

F = −
n∑

t

(1− γt)Et (1)

where Et is the tracking error at time-step t, defined
as the horizontal angular offset between the camera
‘straight ahead’ direction and the target direction, γ
is a weighting constant, set to 0.5 in these experiments,



and the trial is continued for n time-steps — in these
experiments n = 10. Note that the sum is negated to
ensure that higher fitness values are better.

A second experiment was performed to investigate
whether shaping improved performance. The essential
idea behind this shaping regime is to get the controller
to first learn how to locate the target in the image,
and only then to learn how to track the target. This
is an example of controller decomposition. The first of
these stages is broken down into four smaller stages, in
which the controller has to locate a target appearing
in successively larger and larger areas of the image —
an example of progressive problem difficulty. For the
light-location stages, the controller is required to sig-
nal its estimate of the position of the target by setting
a ‘memory unit’ to a value representing the pan posi-
tion of the target relative to the centre of the image.
The fitness for these stages is then simply the differ-
ence between this estimate and the correct value, in
degrees, negated so that higher fitness values are bet-
ter. The same functions and terminals as used in the
control experiment are available to all evolving agents.
For the initial four light-location stages, each evolved
agent possess an output targeting the memory unit,
plus a validity output for conflict resolution. In the
final light-tracking stage, the evolved agent has a sin-
gle output controlling the pan speed, and an additional
terminal node is made available that can read the value
currently stored in the memory unit.

In detail, the five stage shaping regime looked like this:

1. 1-D light-location task with targets appearing
only in the leftmost 25% of the image.

2. 1-D light-location task with targets appearing
only in the leftmost 50% of the image. The first
agent is frozen and a second evolving agent is
added.

3. 1-D light-location task with targets appearing
only in the leftmost 75% of the image. The sec-
ond agent is frozen and a third evolving agent is
added.

4. 1-D light-location task with targets appearing
anywhere in the image. The third agent is frozen
and a fourth evolving agent is added.

5. 1-D light-tracking task with targets appearing
anywhere in the image. The fourth agent is frozen
and a fifth agent is added. The new agent has ac-
cess to a new terminal node mem which reads the
memory unit written to by the first four agents.

Table 1: Comparison of end-of-run results for the
light-tracking experiments. (a) Control experiment.
(b) Shaped experiment. All tracking errors are given
in degrees.

Min. Tracking Error Best Individual
10% Median 90% Error Hits

(a) 6.0 7.9 – 9.0 10.3 5.7± 0.4 95.2%
(b) 4.3 5.5 – 7.2 9.8 4.2± 0.5 97.3%

Each stage is 25000 tournaments long. The control
experiment was continued for 125000 tournaments to
provide a fair comparison. Each experiment was re-
peated 50 times with different random number seeds
to get good statistics.

Table 1 shows the end-of-run performances from the
two experiments. The first three columns show how fi-
nal performance varied over the 50 runs, and show the
median, and 10th and 90th percentile tracking errors of
the best individual at the end of each run. The range
shown for the median gives the 95% confidence inter-
val. A two-tailed randomization test (Cohen, 1995)
showed that the controllers produced by the shaped ex-
periment have a significantly lower median error than
those produced by the control (p < 0.01). The last
three columns show the tracking performances of the
best individuals seen from each experiment. The hit
rate indicates what percentage of the time the con-
troller kept the target in view for a whole trial.

4.2 BACK TO REALITY

As mentioned at the beginning of this paper, it is one
things to show that shaping can help us produce better
robot controllers in simulation, but another thing alto-
gether to show that this leads to better controllers in
reality. To test the ability of the evolved controllers to
work on the real robot, further shaping runs were car-
ried out to attempt to evolve controllers for the light
tracking task that could compete with hand-designed
controllers. Space precludes a detailed description of
the experimental procedure here, but a full descrip-
tion can be found in Perkins (1999b). In brief though,
a ten stage shaping regime, based on the one investi-
gated above, was used to produce a controller that per-
formed well on the full pan and tilt light-tracking task
in simulation. This controller was then transferred di-
rectly to the real robot head upon which the simulator
was based, and tested in the manner described below.
A handmade controller, using a simple ‘threshold and
centroid’ technique to decide how to move the camera,
was also produced, and this was tested in the same



way.

The light-tracking controllers were tested by darken-
ing the room, and then holding a desk lamp in front of
the robot at a distance of about 1.5m from the cam-
era. The lamp was held stationary in 100 different
positions, and the controller was allowed to attempt
to point the camera at the light. Performance was
measured by using simple image processing to locate
the centre of the light in the image, and determining
the offset from the optical axis of the camera.

Table 2 shows the results from the real-world evalua-
tions.

Table 2: Comparison of real-world performances of
evolved and hand-made light-tracking controllers.

Controller Mean Error

Evolved light-tracker 5.09± 1.49
Hand-made light-tracker 1.41± 0.15

Subjectively, the evolved controller tracked the light as
well as the hand-made controller. The objective com-
parison above suggests that the hand-made controller
does better, but this is misleading since the algorithm
used to locate the light for the purposes of evaluation
is the same as the one the hand-made controller uses
to track the light. Hence a good score is guaranteed!

5 CONCLUSIONS

The shaping experiments presented here, along with
additional experiments presented in Perkins (1999b),
show that if used carefully, shaping can significantly
improve the final quality of controllers evolved for com-
plex tasks. In Perkins (1999a), similar techniques were
used to evolve a controller that could track arbitrar-
ily coloured moving objects with both pan and tilt
axes. Whereas controller decomposition based around
‘control-flow’ has been used several times before to im-
prove learning performance (e.g. Dorigo and Colom-
betti, 1993), the ‘data-flow’ decomposition used here
is, I believe, novel.

The paper also provides a further demonstration of
the process of transferring a controller that has been
evolved in simulation onto a real robot, using a com-
plex visual task.
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